skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Javadi, Amir Bahador"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As power systems evolve with the increasing integration of renewable energy sources and smart grid technologies, there is a growing demand for flexible and scalable modeling approaches capable of capturing the complex dynamics of modern grids. This review focuses on symbolic regression, a powerful methodology for deriving parsimonious and interpretable mathematical models directly from data. Symbolic regression is particularly valuable for power systems due to its ability to uncover governing equations without prior structural assumptions, enabling transparent and data-driven insights into nonlinear system behavior. The paper presents a comprehensive overview of symbolic regression methods, including sparse identification of nonlinear dynamics, automatic regression for governing equations, and deep symbolic regression, highlighting their applications in power systems. Through comparative case studies of the single machine infinite bus system, grid-following, and grid-forming inverters, we analyze the strengths, limitations, and suitability of each symbolic regression method in modeling nonlinear power system dynamics. Additionally, we identify critical research gaps and discuss future directions for leveraging symbolic regression in the optimization, control, and operation of modern power grids. This review aims to provide a valuable resource for researchers and engineers seeking innovative, data-driven solutions for modeling in the context of evolving power system infrastructure. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026